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There is a growing focus around the world on marine spatial
planning, including spatial fisheries management. Some spatial
management approaches are quite blunt, as when marine pro-
tected areas (MPAs) are established to restrict fishing in specific
locations. Other management tools, such as zoning or spatial user
rights, will affect the distribution of fishing effort in a more
nuanced manner. Considerable research has focused on the ability
of MPAs to increase fishery returns, but the potential for the
broader class of spatial management approaches to outperform
MPAs has received far less attention. We use bioeconomic models
of seven nearshore fisheries in Southern California to explore the
value of optimized spatial management in which the distribution
of fishing is chosen to maximize profits. We show that fully
optimized spatial management can substantially increase fishery
profits relative to optimal nonspatial management but that the
magnitude of this increase depends on characteristics of the fishing
fleet and target species. Strategically placed MPAs can also increase
profits substantially compared with nonspatial management,
particularly if fishing costs are low, although profit increases
available through optimal MPA-based management are roughly
half those from fully optimized spatial management. However, if
the same total area is protected by randomly placing MPAs, starkly
contrasting results emerge: most random MPA designs reduce
expected profits. The high value of spatial management estimated
here supports continued interest in spatially explicit fisheries
regulations but emphasizes that predicted increases in profits
can only be achieved if the fishery is well understood and the
regulations are strategically designed.
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Spatially explicit fisheries management has garnered consid-
erable attention in recent years, and this trend is likely to

increase as more focus is placed on marine spatial planning (1, 2).
Some forms of spatial management simply prohibit fishing in
certain locations, using tools such as no-take marine protected
areas (MPAs). In other cases, regulations may have a more nu-
anced effect on the spatial pattern of fishing. Examples of these
more flexible approaches include spatial zoning of fleet access (3),
spatially localized gear restrictions (4, 5), and spatially explicit
catch quotas (6). In addition to regulation-based approaches,
spatial user rights can also affect the distribution of fishing effort
(7). These varied tools have all been suggested to improve fish-
eries outcomes by changing the spatial pattern of harvesting. Such
spatial management can take advantage of heterogeneity in the
seascape by protecting populations that are key sources of larvae
(8) or by tuning harvest regulations in response to local life-his-
tory parameters (9).
Spatial management is not without its challenges. Spatial

approaches often require or at least benefit from spatially ex-
plicit data about the environment, biology, and fishery (e.g., ref.
10). Furthermore, fishermen often oppose limits on where they
can fish (11, 12), and it may be more difficult or costly to enforce
spatially complex regulations. Faced with these hurdles, it is
important to assess the value of spatially explicit management of
marine systems and to determine under what conditions it is
advantageous to pursue such management. Knowledge of the

potential gains will indicate whether resources should be devoted
toward these approaches. In cases where expected gains in profit
or yield are substantial, this information may also reduce social
resistance to new regulations.
A number of recent theoretical studies have looked at the po-

tential for MPAs to increase fishery yields or profits (13–15), but
these have focused on no-take MPAs and give us little indication
of how a more flexible form of spatial management would impact
profitability. A few studies have addressed the generalized form of
spatial management in which effort levels in each location can be
set to maximize total profits. However, they have focused on de-
termining whether MPAs are part of the optimal fishing distri-
bution (e.g., refs. 16 and 17) and have not quantified the value
of this approach, much less its value relative to simpler forms of
spatial management. Costello and Kaffine (18) explore the role of
MPAs in a spatial property rights fishery and show that MPAs
increase total profits if fishing outside of the MPAs is not co-
ordinated but decrease profits if fishing is cooperative.
Thus, previous work has left several important questions

unanswered: Can optimal spatial fisheries management, in which
fishing pressure is regulated at a fine spatial scale, increase
profits substantially compared with nonspatial management?
How do these increases depend on the biological and economic
characteristics of a fishery? In addition, can a strategically
designed MPA network capture most of the benefits available
from more complex spatial management?
Here we develop a bioeconomic model uniquely suited for

addressing these open questions. This spatially explicit model
represents seven fisheries in southern California that span
a range of life-history characteristics (Methods). The model
benefits from the unusually high-quality spatial data available in
Southern California. Comprehensive maps of the seafloor allow
us to accurately describe the distribution of habitat for each
species, and sophisticated models of ocean currents provide the
most detailed estimates of point-to-point dispersal probabilities
ever produced (Fig. 1). A modeling approach to our questions is
necessary for two reasons. First, although the conservation benefits
of spatial fishery management can be studied empirically (19, 20),
the effect of such management on fishery yields or profits has
proven harder to measure directly, particularly at the larger scales
relevant to most fisheries (21, 22). Second, fully optimized spatial
management of the type considered here is an experiment that has
not yet been implemented in any fishery to our knowledge.
We use the model to estimate the maximum fishery profit that

could be obtained under management scenarios that span
a range of spatial complexity: (i) “nonspatial management,” in
which a manager can set the total amount of effort but has no
control over how that effort is spatially allocated, (ii) “fully op-
timized spatial management,” in which a manager can set the
fishing effort applied in each location, (iii) “strategic MPA-based
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management,” in which a manager can set total effort and des-
ignate some locations as no-take MPAs but cannot control how
fishing outside of MPAs is distributed, and (iv) “nonstrategic
MPA-based management,” in which a manager starts with arbi-
trarily placed MPAs and then optimizes the total effort outside
to maximize profits. Within the limits of each management sce-
nario, we optimize the fishing regulations to maximize total
profits. By comparing the best outcome that is possible using
each of these approaches, we illustrate how the choice of man-
agement system affects the potential value of the fishery. We
highlight the value of fully optimized spatial management, which
represents the extreme end of a spectrum of complexity of spatial
management and thus indicates the upper bound of returns
possible with these approaches. We also identify scenarios in
which MPAs are likely to realize a large fraction of this value, as
well as cases in which MPAs are likely to be ineffective or even
reduce fishery profits.

Results
Value of Spatial Management.We used our bioeconomic models to
estimate the maximum profit attainable under each management

scenario for seven species over a range of assumptions about the
strength of density dependence (expressed as the compensation
ratio, CR) and the cost per unit effort of fishing (denoted θ). The
value of spatial management, calculated as the percentage by
which the value of fully optimized spatial management (scenario 2)
exceeds the value under optimal nonspatial management (sce-
nario 1), is generally high but varies across the seven species
considered here. If the population is sensitive to harvest (small
CR) and fishing costs are low (small θ), spatial management can
increase fishery profits between 14% and 81% relative to non-
spatial management (CR = 4, θ = 0.01; Fig. 2A). However, if the
population is robust to harvest or expensive to fish, the value
of spatial management is typically considerably lower (Fig. 2 B
and C and Fig. S1).
We find that in some cases strategic management with MPAs

also increases profits substantially relative to nonspatial man-
agement. If the population is sensitive to harvest and fishing costs
are low, strategically placed MPAs can increase profits between
8% and 52% relative to optimal nonspatial management (CR =
4, θ = 0.01; Fig. 2D). As with full spatial management, however,
this value is lower if the target species is robust to fishing or
fishing costs are high (Fig. 2 E and F and Fig. S1).
For each species and parameter set, fully optimized spatial

management outperforms MPA-based management, as would be
expected given that any fishing distribution created by the latter
system is also possible under the former (Fig. 3). Fully optimized
management can improve profits by 8–15% even in scenarios
whereby MPA-based management has no effect (as evidenced by
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Fig. 1. (A) Map of the Southern California region, with circle sizes repre-
senting the amount of sheephead habitat in each patch, and numbers and
arrows indicating patch indexing. (B) Example connectivity matrix for
sheephead showing the relative probability of larval transport from each
source patch to each potential destination. Indexing for the connectivity
matrix follows the patch numbers in A.
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Fig. 2. (A–C) Value of fully optimized spatial management relative to op-
timal nonspatial management for (A) all seven species when CR = 4, θ = 0.01
(species abbreviations in Table 1); (B) sheephead over a range of density
dependence and cost values; (C) California halibut over a range of density
dependence and cost values. (D–F) Value of strategic MPA-based manage-
ment relative to optimal nonspatial management for (D) all seven species
when CR = 4, θ = 0.01; (E) sheephead over a range of density dependence and
costs; (F) California halibut over a range of density dependence and costs.
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the intercepts in the linear relationships in Fig. 3). In cases in
which MPAs do increase profits, fully optimized spatial man-
agement further increases profits an additional 43–98% (shown
by the slopes in Fig. 3). The linear relationship between the
values of the two management approaches holds across species
and assumptions about density dependence but is sensitive to the
cost of fishing. If fishing costs are low, optimal MPA-based
management can achieve up to 70% of the results possible with
fully optimized spatial management, but if fishing costs are high
MPAs capture a smaller fraction of that maximum value.

Patterns of Fishing Under Alternative Management Approaches. Al-
though optimized MPA-based management can be seen as
a simplified form of fully optimized spatial management, very
different patterns of fishing are obtained under the two
approaches. For example, for sheephead (CR = 4, θ = 0.01;
Figs. S2 and S3), the correlation between the amount of effort in
each patch under the two approaches is only 0.69. Fewer patches
are fished under MPA-based management, but fishing in open
patches may be quite intense, ranging up to 0.6, a level of effort
that removes 45% of the fish within that patch in a year (Fig.
S3A). Under full spatial management, by contrast, fewer patches
are closed to fishing, and fishing effort is relatively modest ev-
erywhere, with an effort of less than 0.45 in even the most in-
tensely fished patch (equivalent to removing 35% of the fish in
that patch in a year). The fact that more fishing is required under
MPA-based management likely explains why MPAs are less
useful when fishing is expensive; increases in yields due to MPAs
are offset by the high costs of fishing a few locations intensely.

These patterns are consistent across species and scenarios, with
correlations between fishing effort under the two management
approaches ranging from 0.12 to 0.91 (Table S1). In each case
the amount of habitat that is unfished and the effort in the most
intensely fished location are both higher under MPA-based
management (Figs. S3–S5).

Contrasting Effects of Strategic and Random MPA Placement. Al-
though MPAs have considerable potential to increase fishery
profit, this is only true if they are strategically placed to take
advantage of spatial heterogeneity in habitat and larval dispersal.
By contrast, if MPAs are placed randomly such increases are not
possible. This is true even if the area of habitat protected by the
random MPA scenarios is the same as that protected by the
equivalent strategically designed MPA network. In fact, the vast
majority of random MPA networks reduce fishery profits relative
to optimal nonspatial management (e.g., Fig. 4A). In almost
every case the expected value of the fishery with randomly placed
MPAs is lower than it would be under nonspatial management
(Table 1). The one exception in our results is halibut, with weak
density dependence and low fishing costs. The potential for
spatial management to improve halibut yields is so great that
even random MPAs can increase profits, but at a rate much
lower than achieved with strategically placed MPAs (Fig. 4B).
Between the poles of random and optimal MPA placement there
is a range of intermediate network designs with strategic but
imperfect MPA placement. When some MPAs are selected from
the optimal network and the rest are randomly placed, we found
that typically greater than 50% of MPAs had to be drawn from
the optimal network before these intermediate networks out-
perform nonspatial management (Table 1).

Discussion
We demonstrate that fully optimized spatial management has
great potential to increase nearshore fishery profits relative to
those obtained with nonspatial management, with the magnitude
of these increases varying across species. The most dramatic
outlier was California halibut, for which spatial management was
almost twice as valuable as for any other species. Halibut likely
stands out because it was the only soft bottom species modeled;
its habitat is relatively broadly distributed throughout southern
California, providing more opportunity for spatial management
to protect source populations than is possible with a more
patchily distributed species. Additional variation across species
results from differences in basic life-history characteristics such
as growth, spawning season, and pelagic larval duration. Despite
variability across species, we observe very strong concordance
between the increase in profits from fully optimized spatial
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management and the increase in profits from strategically
designed MPAs, suggesting the characteristics that make a spe-
cies appropriate for one type of spatial management approach
also apply to the other.
In addition to the inherent variation from species to species,

we find that the value of spatial fishery management is also af-
fected by the strength of density dependence and the cost of
fishing. Spatial management is more valuable for species with
weak density dependence; in these scenarios protecting key
populations leads to higher recruitment in fished locations. By
contrast, when density dependence is strong the increase in larval
supply resulting from spatially targeted reductions in fishing has
little effect on recruitment in fished locations, so spatial man-
agement has little potential for increasing profits. This result is
consistent with previous theoretical work that has shown that
postsettlement density dependence makes MPAs less effective
(23). A high cost of fishing also reduces the utility of spatial
management. Because spatial management involves reducing
fishing in certain areas and increasing it in others, this shift is
typically less profitable when the cost of fishing is high, aligning
with previous MPA-focused theory (24).
The value of spatial management results in part from capital-

izing on dispersal patterns created by complex ocean currents.
Recent field work has drawn attention to the link between ocean
currents and patterns of fish settlement (25). Larval dispersal
interacts with the patchy distribution of habitat to create a sea-
scape in which larvae produced in some patches are distributed
across many habitable destination sites, whereas larvae produced
in other patches are washed offshore without the opportunity to
settle, grow, or reproduce. Thus, some patches are “sources”
containing populations that supply settlers throughout the region,
whereas other patches are “sinks” and contribute little to the
species’ regional persistence (8, 26). For the system as a whole,
fish in particularly good source patches will often be worth more in
the water producing offspring than on a boat headed for market.
Previous models of MPA-based management show that pro-

tecting sources can be an important conservation strategy (27),
and simple models of spatial management indicate that when
source–sink dynamics are strong, more heterogeneous spatial
patterns of fishing are optimal (16, 17). We are able to model
complex source–sink dynamics because we have access to de-
tailed dispersal estimates produced by regional ocean modeling.
Although several potentially important aspects of larval dispersal
are not included in these estimates (e.g., complex larval behavior,
interannual variability, resolution of surface wave-driven near-
shore flows), they effectively capture the potential for larval

dispersal between sites and represent an important advance over
models that assume simple diffusive or advective dispersal.
When comparing management approaches, we focus on the

maximum value that could be obtained through fully optimized
spatial management. Although we document considerable
increases in profits, spatial management is not a silver bullet. If
the spatial component of management is applied arbitrarily, it
may actually decrease profits. This is emphatically demonstrated
by our analysis of randomly sited MPAs. A haphazardly designed
MPA network is much less effective than a strategically designed
one, even when the area of habitat protected is the same. Al-
though we focus on the contrast between fully optimized and
random management, most management is likely to be strategic
but imperfect, in part because of uncertainty in our understanding
of the biological, physical, and economic characteristics of any
fishery. We show that in most cases, MPA networks need not be
perfectly designed to improve on nonspatial management, but
there remains a serious question about whether uncertainty in
real-world fisheries is often too great to permit strategic spatial
regulations of the kind described here.
Although we find that in order for an MPA network to im-

prove fisheries outcomes it must be designed strategically, this
analysis focuses on increasing profits in a well-managed fishery.
A commonly cited advantage of MPAs is that they can protect
fish populations even with very little information and across
a range of management contexts, a fact that has been confirmed
by empirical studies (19). If we had treated the protection of fish
populations as one of the goals of fishery management, randomly
placed MPAs would have yielded higher value. Even if only
profits are considered, randomly placed MPAs may contribute to
this goal if MPAs are placed within poorly managed or open-
access fisheries (28, 29). MPAs have also been proposed as in-
surance against accidental fishery collapse (30, 31) and may serve
that purpose even if haphazardly designed.
Although fine-scale spatial management of marine systems may

seem impractical to implement at first glance, it can be achieved
through a variety of existing tools, such as spatially explicit limits
on fishing effort or allowable catch, spatial property rights, or
spatial limits on gear types or fleet access. Improvements in global
positioning system and vessel monitoring technology also make
enforcement of and compliance with spatial regulations cheaper
and easier. Additionally, we draw a distinction between MPA-
based management and fully optimized spatial management be-
cause we limit our analysis to no-take MPAs (also called marine
reserves or no-take zones). However, MPAs can include a range
of fishing restrictions, and a network of MPAs with different rules

Table 1. The results of randomized MPA placement

Strength of
density
dependence (CR)

Cost of
fishing (θ)

California
halibut (CH) Kelp bass (KB)

Kelp rockfish
(KR) Opaleye (OP)

Ocean
whitefish
(OW)

Red sea urchin
(RU)

Sheephead
(SH)

A B C A B C A B C A B C A B C A B C A B C

4 0.01 1.05 74 0 0.94 1 45 0.89 0 59 0.98 32 15 0.86 0 68 0.95 4 33 0.93 0 56
4 0.05 1.01 51 0 0.79 0 89 0.86 0 77 0.96 17 35 0.82 0 76 0.93 0 53 0.93 0 72
4 0.1 0.96 23 23 0.89 0 91 0.85 0 89 0.94 9 52 0.78 0 84 0.92 0 69 0.94 0 83
4 0.2 0.85 0 65 0.91 0 99 0.85 0 100 0.93 4 69 0.69 0 94 0.93 0 64 0.96 0 97
8 0.01 0.95 11 24 0.91 0 84 0.87 0 72 0.92 1 60 0.78 0 92 0.98 5 31 0.85 0 93
8 0.05 0.84 0 66 0.93 0 97 0.87 0 86 0.92 0 67 0.67 0 96 0.98 4 51 0.78 0 100
8 0.1 0.68 0 88 0.92 0 99 0.84 0 95 0.93 0 73 0.66 0 99 0.95 0 89 0.88 0 100
8 0.2 0.52 0 100 0.88 0 100 0.85 0 100 0.9 0 94 0.81 0 100 0.9 0 100 0.76 0 100
12 0.01 0.9 0 54 0.93 0 90 0.9 0 75 0.9 0 72 0.74 0 97 0.99 13 25 0.87 0 98
12 0.05 0.77 0 82 0.91 0 99 0.89 0 85 0.9 0 83 0.62 0 98 0.99 2 63 0.96 0 100
12 0.1 0.6 0 96 0.92 0 96 0.87 0 97 0.91 0 90 0.49 0 100 0.99 23 80 0.69 0 100
12 0.2 0.47 0 100 0.87 0 100 0.82 0 100 0.86 0 99 0.36 0 100 0.99 0 100 0.54 0 100

For each species and parameter set: A, expected profit with a randomly designed MPA network relative to optimal nonspatial management; B, percentage
of random networks that outperform optimal nonspatial management; C, percentage of randomMPAs that would need to be replaced with optimally placed
MPAs for the network to outperform nonspatial management.
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could potentially be configured to approximate full spatial man-
agement. Furthermore, some of the management approaches
listed above have desirable features not captured by our model.
For example, spatial property rights can end the “race to fish,”
allowing fishermen to harvest using the most efficient methods at
the most efficient times. Of course those additional benefits might
also be achieved by nonspatial reforms, such as implementation
of individual transferable quotas.
Given the world’s reliance on seafood as a source of protein

and the increasing pressures on the world’s oceans, identifying
ways to improve the efficiency of fisheries is of immediate im-
portance. We find that spatial management has considerable
potential to increase fishery profits but that this result depends
on the characteristics of the fishery, uncertainty about the sys-
tem, and the degree to which spatial regulations are applied in
a strategic manner. Our results should spur future research into
spatial management approaches, and in particular motivate
questions about the effectiveness of spatial management under
realistic scenarios whereby management is applied strategically
but imperfectly. In the face of real-world uncertainty, it is im-
portant to understand whether the benefits of optimized spatial
management justify the costs of its implementation, or whether
there are simpler, nonspatial forms of management that could
achieve comparable results. Management in which fishing effort
is regulated at a fine scale is currently rare but is likely to become
more common in the future. For one, if terrestrial systems pro-
vide a guide to what is possible, complex spatial harvesting plans
are a readily attainable goal (e.g., forest and rangeland man-
agement). Additionally, increasing trends toward privatizing
ocean resources and implementing marine spatial planning for
a range of competing ocean uses provide a framework for more
spatially explicit fisheries management.

Methods
We develop an age-structured, spatially explicit population model for the
region between Point Conception, CA and the Mexican border, including
both the mainland and offshore islands and all nearshore habitat less than
100 m in depth. Each run of the model simulates the dynamics of a single
species at an annual timestep, dividing the seascape into 135 patches spaced
approximately every 8 km along the mainland coast and around the pe-
rimeter of each island (Fig. 1A). In each patch, the model tracks the number
of fish of each age, with fish dispersing between patches as larva or juve-
niles, experiencing density-dependent mortality during settlement, growing
according to a von Bertalanffy function, and dying from both natural
mortality and harvest. The model can also dynamically allocate a fixed total
fishing effort based on a fleet model that assumes that each fisherman seeks
to maximize their individual profits. The simulation continues until both the
fish and the distribution of fishermen have reached a stable state (this
eventual equilibrium is not sensitive to initial conditions, provided a nonzero
initial population). The distribution of fishing effort across the system is
a function of the management approach (see below), but within a patch,
profits are determined by the biomass of fish, the fishing effort, and the
costs of fishing. A detailed description of the biological and economic model
is found in SI Methods.

Model Parameters. We model six fish species and one invertebrate species,
chosen because they are targeted by commercial and/or recreational fish-
ermen in Southern California: California halibut (Paralichthys californicus),
kelp bass (Paralabrax clathratus), kelp rockfish (Sebastes atrovirens), opaleye
(Girella nigricans), ocean whitefish (Caulolatilus princeps), sheephead
(Semicossyphus pulcher), and red sea urchin (Strongylocentrotus francisca-
nus). These species cover a range of life-history, dispersal, and habitat
characteristics, and each is intended to be representative of a broader group
of similar species in southern California. Parameters for modeling each
species follow those used in California’s Marine Life Protection Act process
(Table S2; http://www.dfg.ca.gov/mlpa).

For each species, we calculate the area of suitable habitat in each patch in
the study region based on its depth and substrate associations (Fig. 1B and
Fig. S6). Habitat maps, compiled by the California Department of Fish and
Game, are based mainly on sonar data, which are used to classify the sub-
strate as hard or soft and determine the depth (seafloor.csumb.edu/csmp/
csmp.html), but also use aerial surveys of giant kelp to identify shallow
nearshore areas of hard substrate that can be difficult to map with sonar.

Larval dispersal patterns are determined using numerical output from
a Regional Ocean Circulation Modeling System (ROMS) simulation for the
Southern California Bight (32), which advects millions of Lagrangian par-
ticles, simulating the transport of fish larvae in their pelagic phase (33, 34).
The resulting model synthesis provides the probability of a particle released
at any one point in the study region arriving at any other location in the
region (Dij) for a given advection time. The validity of these dispersal
probabilities has been tested using available surface drifter observations
(35), and their ecological utility has been demonstrated by studies of genetic
(36, 37), intertidal, and subtidal community similarity (38). Dispersal proba-
bilities are generated for each species according to the months in which that
species spawns and its pelagic larval duration (34), averaging over 7 y (1996–
2002). The collection of Dij values can be expressed as a matrix showing the
relative probability of larvae being transported from one location to an-
other along the coastline and islands; we treat these probabilities as de-
termining the fraction of the larval output of each patch transferred to each
other patch (Fig. 1B and Fig. S7).

Parameter Uncertainty. Some parameters in our model, such as the length–
weight relationship, are relatively well known, whereas others, such as the
unfished population size, are poorly known but have little effect on the
model’s behavior. However, when a parameter has high uncertainty and its
value has a significant effect on the results, it is necessary to analyze the
model across a range of parameter space, as is the case here for the strength
of density dependence and the cost of fishing.

The strength of density dependence, often expressed in the fisheries liter-
ature as the CR or the steepness of the stock–recruitment curve (39), is known
to be of crucial importance for modeling fish populations. Estimates of the
strength of density dependence can vary wildly even for closely related species
or different populations of the same species (40), and generally it is difficult to
accurately estimate this parameter for species that have not been seriously
overfished (41). We use a range of values that are appropriate for the long-
lived benthic species we model. We start with the conservative assumption
that fish are relatively sensitive to harvest (CR = 4), although some species in
the region may have even lower CRs (42). We also explore values representing
fish populations that are less sensitive to harvest (CR = 8 and 12) but are within
the range often used when modeling similar benthic fish (e.g., ref. 29).

We assume that for each species price isfixed (i.e., perfectly elastic over the
range of harvest represented by the spatial policies examined). The cost per
unit effort of fishing in patch i (θi) depends on distance from the nearest port
(SI Methods, Fig. S8). These patch-specific costs are scaled to the parameter θ,
which reflects the cost per unit effort of fishing in a patch at an average
distance from the nearest port. Although per-trip costs (e.g., fuel, salaries,
etc.) are relatively easily enumerated, the cost of catching a certain fraction
of the fish in an area is more difficult to estimate. However, because both
instantaneous yield and instantaneous costs are proportional to effort in this
model, fishing in a patch will cease being profitable when biomass equals θi
(i.e., instantaneous profits in a patch equals effort times biomass minus ef-
fort times θi). We take advantage of this relationship, expressing our cost
parameter, θ, relative to the biomass in an average patch under unfished
conditions. We use a range of θ values, from 0.01, which implies that in
a patch an average distance from port fishing can profitably reduce pop-
ulations to 1% of the average unfished population size, to 0.2, for which
populations less than 20% of the average unfished population size cannot
be fished profitably at that distance. At the lower bound of this range, costs
are relatively unimportant; the fishing distribution that maximizes profits is
similar to that which would maximize yields. At the upper bound, costs have
a more substantial effect on profits, particularly when fishing has reduced
population sizes (Fig. S9). In addition to exploring a range of fishing costs,
we repeated our analyses under conditions whereby the cost of fishing was
spatially uniform and obtained very similar results (SI Methods, Alternative
Fleet Model, Tables S3 and S4, and Figs. S10–S16).

Alternative Management Approaches. To estimate the value of a fishery under
different management strategies, we compare the best outcome available
under nonspatial management with that obtained using spatial regulatory
tools. We examine four scenarios, in each allowing a manager to optimally
choose a set of management parameters P ≡ {P1, P2,. . .., Pn} to maximize the
value of the objective function:

V
�
P
� ¼

X135

i¼1

πðPÞi ; [1]

where π(P)i is the annual profit generated in patch i at equilibrium, given
the set, P, of management parameters, and V(P) is the sum of profits in all
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patches. We focus on steady-state outcomes and so implicitly assume no
discounting. We also focus only on economic outcomes; the potential for
spatial management to improve multiple objectives (e.g., conservation and
economic objectives) simultaneously is intriguing but not addressed here.
Details on optimization of each scenario are given in the SI Methods.
Scenario 1. The simplest form of management addressed here is “nonspatial
management.” We use this as a baseline with which to compare spatial
approaches. We assume that a manager can control the total fishing effort
(by limiting the number of fishermen, days fished, total quota, or by other
means) but that the spatial distribution of fishing effort is determined by the
private decisions of individual fishermen, each seeking to maximize personal
profits. For a given total amount of fishing, we implement a fleet model in
which fishing effort is distributed so that at equilibrium each fished patch
has the same average profit, and thus no fisher has an incentive to reallocate
effort from one patch to another (Fig. S1 shows examples of how fishing
effort is distributed under each scenario).
Scenario 2. The most complex form of management that we model is “fully
optimized spatial management.” In this case a manager can control the
fishing effort allocated to each patch (potentially including setting fishing
to zero in some patches, i.e., no-take areas) and chooses a pattern of
fishing that maximizes the total profits from the fishery (Fig. S1B). This
represents the highest return that could be achieved by any form of
spatial management.
Scenario 3. Intermediate in complexity between nonspatial and fully opti-
mized spatial management is management that incorporates strategically

placedMPAs. Under this system amanager can set the total amount offishing
effort and can also designate certain patches as closed to fishing but cannot
control how fishing effort is distributed among the unprotected patches.
Fishing effort in the open patches is distributed by the fleet model as de-
scribed in scenario 1 (Fig. S1C).
Scenario 4. Finally, we examine nonstrategic MPA management, whereby the
locations of MPAs are randomly selected instead of being optimized. As with
strategic MPA management, the manager chooses total effort to maximize
profits given that particular set of MPAs. To provide a fair comparison with
scenario 3, we use only MPA networks that cover the same area as the op-
timally chosen MPA network. Comparisons of these results with those ach-
ieved by strategic MPA management indicate the value of optimal network
design. We extend this analysis by evaluating MPA networks with a mix of
optimally and randomly placed MPAs. We replace MPAs from randomly
designed networks with MPAs from the optimal network (for the same
species and parameter set) to determine how many optimally placed MPAs
are necessary on average to get higher profits than would be achieved with
optimal nonspatial management.
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